3.251 \(\int \frac {(e \sec (c+d x))^{3/2}}{(a+i a \tan (c+d x))^3} \, dx\)

Optimal. Leaf size=132 \[ \frac {2 i e^2}{45 d \left (a^3+i a^3 \tan (c+d x)\right ) \sqrt {e \sec (c+d x)}}+\frac {2 e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 a^3 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {4 i e^2}{9 a d (a+i a \tan (c+d x))^2 \sqrt {e \sec (c+d x)}} \]

[Out]

2/15*e^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d/cos(d*x+c
)^(1/2)/(e*sec(d*x+c))^(1/2)+4/9*I*e^2/a/d/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^2+2/45*I*e^2/d/(e*sec(d*x+c
))^(1/2)/(a^3+I*a^3*tan(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 132, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3500, 3502, 3771, 2639} \[ \frac {2 i e^2}{45 d \left (a^3+i a^3 \tan (c+d x)\right ) \sqrt {e \sec (c+d x)}}+\frac {2 e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 a^3 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {4 i e^2}{9 a d (a+i a \tan (c+d x))^2 \sqrt {e \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(e*Sec[c + d*x])^(3/2)/(a + I*a*Tan[c + d*x])^3,x]

[Out]

(2*e^2*EllipticE[(c + d*x)/2, 2])/(15*a^3*d*Sqrt[Cos[c + d*x]]*Sqrt[e*Sec[c + d*x]]) + (((4*I)/9)*e^2)/(a*d*Sq
rt[e*Sec[c + d*x]]*(a + I*a*Tan[c + d*x])^2) + (((2*I)/45)*e^2)/(d*Sqrt[e*Sec[c + d*x]]*(a^3 + I*a^3*Tan[c + d
*x]))

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3500

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(2*d^2
*(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1))/(b*f*(m + 2*n)), x] - Dist[(d^2*(m - 2))/(b^2*(m + 2*n
)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a
^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integers
Q[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]

Rule 3502

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(d
*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(b*f*(m + 2*n)), x] + Dist[Simplify[m + n]/(a*(m + 2*n)), Int[(d*Sec[
e + f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0] && NeQ[m + 2*n, 0] && IntegersQ[2*m, 2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \frac {(e \sec (c+d x))^{3/2}}{(a+i a \tan (c+d x))^3} \, dx &=\frac {4 i e^2}{9 a d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2}+\frac {e^2 \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))} \, dx}{9 a^2}\\ &=\frac {4 i e^2}{9 a d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2}+\frac {2 i e^2}{45 d \sqrt {e \sec (c+d x)} \left (a^3+i a^3 \tan (c+d x)\right )}+\frac {e^2 \int \frac {1}{\sqrt {e \sec (c+d x)}} \, dx}{15 a^3}\\ &=\frac {4 i e^2}{9 a d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2}+\frac {2 i e^2}{45 d \sqrt {e \sec (c+d x)} \left (a^3+i a^3 \tan (c+d x)\right )}+\frac {e^2 \int \sqrt {\cos (c+d x)} \, dx}{15 a^3 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}\\ &=\frac {2 e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 a^3 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {4 i e^2}{9 a d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2}+\frac {2 i e^2}{45 d \sqrt {e \sec (c+d x)} \left (a^3+i a^3 \tan (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.85, size = 140, normalized size = 1.06 \[ -\frac {e^{-i d x} \sec ^2(c+d x) (\cos (d x)+i \sin (d x)) (e \sec (c+d x))^{3/2} \left (6 e^{2 i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )+3 i \sin (2 (c+d x))+8 \cos (2 (c+d x))+8\right )}{45 a^3 d (\tan (c+d x)-i)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Sec[c + d*x])^(3/2)/(a + I*a*Tan[c + d*x])^3,x]

[Out]

-1/45*(Sec[c + d*x]^2*(e*Sec[c + d*x])^(3/2)*(Cos[d*x] + I*Sin[d*x])*(8 + 8*Cos[2*(c + d*x)] + 6*E^((2*I)*(c +
 d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + (3*I)*Sin[2*(c
+ d*x)]))/(a^3*d*E^(I*d*x)*(-I + Tan[c + d*x])^3)

________________________________________________________________________________________

fricas [F]  time = 0.84, size = 0, normalized size = 0.00 \[ \frac {{\left (90 \, a^{3} d e^{\left (5 i \, d x + 5 i \, c\right )} {\rm integral}\left (-\frac {i \, \sqrt {2} e \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{15 \, a^{3} d}, x\right ) + \sqrt {2} {\left (12 i \, e e^{\left (6 i \, d x + 6 i \, c\right )} + 23 i \, e e^{\left (4 i \, d x + 4 i \, c\right )} + 16 i \, e e^{\left (2 i \, d x + 2 i \, c\right )} + 5 i \, e\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{90 \, a^{3} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

1/90*(90*a^3*d*e^(5*I*d*x + 5*I*c)*integral(-1/15*I*sqrt(2)*e*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x +
 1/2*I*c)/(a^3*d), x) + sqrt(2)*(12*I*e*e^(6*I*d*x + 6*I*c) + 23*I*e*e^(4*I*d*x + 4*I*c) + 16*I*e*e^(2*I*d*x +
 2*I*c) + 5*I*e)*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))*e^(-5*I*d*x - 5*I*c)/(a^3*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {3}{2}}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((e*sec(d*x + c))^(3/2)/(I*a*tan(d*x + c) + a)^3, x)

________________________________________________________________________________________

maple [B]  time = 1.34, size = 388, normalized size = 2.94 \[ \frac {2 \left (20 i \left (\cos ^{5}\left (d x +c \right )\right ) \sin \left (d x +c \right )+3 i \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right )-3 i \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right )-20 \left (\cos ^{6}\left (d x +c \right )\right )+3 i \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-3 i \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-9 i \sin \left (d x +c \right ) \left (\cos ^{3}\left (d x +c \right )\right )+19 \left (\cos ^{4}\left (d x +c \right )\right )-2 \left (\cos ^{2}\left (d x +c \right )\right )+3 \cos \left (d x +c \right )\right ) \left (1+\cos \left (d x +c \right )\right )^{2} \left (-1+\cos \left (d x +c \right )\right )^{2} \left (\frac {e}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \cos \left (d x +c \right )}{45 a^{3} d \sin \left (d x +c \right )^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^3,x)

[Out]

2/45/a^3/d*(20*I*cos(d*x+c)^5*sin(d*x+c)+3*I*sin(d*x+c)*cos(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)-3*I*sin(d*x+c)*cos(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)-20*cos(d*x+c)^6+3*I*sin(d*x+c)*(1/(
1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)-3*I*sin(d*x+c
)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)-9*I*cos
(d*x+c)^3*sin(d*x+c)+19*cos(d*x+c)^4-2*cos(d*x+c)^2+3*cos(d*x+c))*(1+cos(d*x+c))^2*(-1+cos(d*x+c))^2*(e/cos(d*
x+c))^(3/2)*cos(d*x+c)/sin(d*x+c)^5

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e/cos(c + d*x))^(3/2)/(a + a*tan(c + d*x)*1i)^3,x)

[Out]

int((e/cos(c + d*x))^(3/2)/(a + a*tan(c + d*x)*1i)^3, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {i \int \frac {\left (e \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\tan ^{3}{\left (c + d x \right )} - 3 i \tan ^{2}{\left (c + d x \right )} - 3 \tan {\left (c + d x \right )} + i}\, dx}{a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))**(3/2)/(a+I*a*tan(d*x+c))**3,x)

[Out]

I*Integral((e*sec(c + d*x))**(3/2)/(tan(c + d*x)**3 - 3*I*tan(c + d*x)**2 - 3*tan(c + d*x) + I), x)/a**3

________________________________________________________________________________________